Grammalecte  Diff

Differences From Artifact [96443fe4a2]:

To Artifact [059d031769]:


23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62

63
64




65
66
67
68
69
70
71
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63


64
65
66
67
68
69
70
71
72
73
74







-
+













-
+
















-
+

+
-
-
+
+
+
+







def readFile (spf):
    print(" < Read lexicon: " + spf)
    if os.path.isfile(spf):
        with open(spf, "r", encoding="utf-8") as hSrc:
            for sLine in hSrc:
                sLine = sLine.strip()
                if sLine and not sLine.startswith("#"):
                    yield sLine
                    yield sLine.split("\t")
    else:
        raise OSError("# Error. File not found or not loadable: " + spf)



class DAWG:
    """DIRECT ACYCLIC WORD GRAPH"""
    # This code is inspired from Steve Hanov’s DAWG, 2011. (http://stevehanov.ca/blog/index.php?id=115)
    # We store suffix/affix codes and tags within the graph after the “real” word.
    # A word is a list of numbers [ c1, c2, c3 . . . cN, iAffix, iTags]
    # Each arc is an index in self.lArcVal, where are stored characters, suffix/affix codes for stemming and tags.
    # Important: As usual, the last node (after ‘iTags’) is tagged final, AND the node after ‘cN’ is ALSO tagged final.

    def __init__ (self, spfSrc, cStemming, sLangCode, sLangName="", sDicName=""):
    def __init__ (self, src, cStemming, sLangCode, sLangName="", sDicName=""):
        print("===== Direct Acyclic Word Graph - Minimal Acyclic Finite State Automaton =====")
        cStemming = cStemming.upper()
        if cStemming == "A":
            funcStemmingGen = st.defineAffixCode
        elif cStemming == "S":
            funcStemmingGen = st.defineSuffixCode
        elif cStemming == "N":
            funcStemmingGen = st.noStemming
        else:
            raise ValueError("# Error. Unknown stemming code: {}".format(cStemming))

        lEntry = []
        lChar = ['']; dChar = {}; nChar = 1; dCharOccur = {}
        lAff  = [];   dAff  = {}; nAff  = 0; dAffOccur = {}
        lTag  = [];   dTag  = {}; nTag  = 0; dTagOccur = {}
        nErr = 0
        

        # read lexicon
        if type(src) is str:
        for sLine in readFile(spfSrc):
            sFlex, sStem, sTag = sLine.split("\t")
            iterable = readFile(src)
        else:
            iterable = src
        for sFlex, sStem, sTag in iterable:
            addWordToCharDict(sFlex)
            # chars
            for c in sFlex:
                if c not in dChar:
                    dChar[c] = nChar
                    lChar.append(c)
                    nChar += 1
93
94
95
96
97
98
99
100
101
102
103
104
105

106
107
108
109
110
111
112
96
97
98
99
100
101
102




103

104
105
106
107
108
109
110
111







-
-
-
-

-
+







        lWord = [ [dChar[c] for c in sFlex] + [iAff+nChar] + [iTag+nChar+nAff]  for sFlex, iAff, iTag in lEntry ]
        lEntry = None
        
        # Dictionary of arc values occurrency, to sort arcs of each node
        dValOccur = dict( [ (dChar[c], dCharOccur[c])  for c in dChar ] \
                        + [ (dAff[aff]+nChar, dAffOccur[aff]) for aff in dAff ] \
                        + [ (dTag[tag]+nChar+nAff, dTagOccur[tag]) for tag in dTag ] )
        #with open(spfSrc[:-8]+".valuesfreq.txt", 'w', encoding='utf-8') as hFreqDst:  # DEBUG
        #    for iKey, nOcc in sorted(dValOccur.items(), key=lambda t: t[1], reverse=True):
        #        hFreqDst.write("{}: {}\n".format(lVal[iKey], nOcc))
        #    hFreqDst.close()
        
        self.sFileName = spfSrc
        self.sFileName = src  if type(src) is str  else "[None]"
        self.sLangCode = sLangCode
        self.sLangName = sLangName
        self.sDicName = sDicName
        self.nEntry = len(lWord)
        self.aPreviousEntry = []
        DawgNode.resetNextId()
        self.oRoot = DawgNode()