Overview
Comment: | [graphspell] suggestion mechanism improvement: Damerau-Levenshtein extension |
---|---|
Downloads: | Tarball | ZIP archive | SQL archive |
Timelines: | family | ancestors | descendants | both | trunk | major_change | graphspell |
Files: | files | file ages | folders |
SHA3-256: |
6c7fd16428098930ca2746b240ed9937 |
User & Date: | olr on 2025-09-18 12:39:06 |
Other Links: | manifest | tags |
Context
2025-09-18
| ||
13:12 | [graphspell][js] suggestion mechanism improvement: Damerau-Levenshtein extension Leaf check-in: 504e22f37f user: olr tags: trunk, major_change, graphspell | |
12:39 | [graphspell] suggestion mechanism improvement: Damerau-Levenshtein extension check-in: 6c7fd16428 user: olr tags: trunk, major_change, graphspell | |
12:35 | [core] label clarity check-in: d2dbd35eb8 user: olr tags: trunk, core | |
Changes
Modified grammalecte-cli.py from [885831172a] to [0dcc4aa5f2].
︙ | ︙ | |||
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 | print("Error. This error doesn’t exist.") else: # pseudo-console sInputText = "\n~==========~ Enter your text [/h /q] ~==========~\n" sText = _getText(sInputText) while True: if sText.startswith("?"): for sWord in sText[1:].strip().split(): if sWord: echo("* " + sWord) for sElem, aRes in oSpellChecker.analyze(sWord): echo(" - " + sElem) for sMorph, sMeaning in aRes: echo(" {:<40} {}".format(sMorph, sMeaning)) elif sText.startswith("!"): for sWord in sText[1:].strip().split(): if sWord: for lSugg in oSpellChecker.suggest(sWord): echo(" | ".join(lSugg)) elif sText.startswith(">"): oSpellChecker.drawPath(sText[1:].strip()) elif sText.startswith("="): sSearch = sText[1:].strip() if "=" in sSearch: nCut = sSearch.find("=") sFlexPattern = sSearch[0:nCut] sTagsPattern = sSearch[nCut+1:] else: sFlexPattern = sSearch sTagsPattern = "" for aRes in oSpellChecker.select(sFlexPattern, sTagsPattern): echo("{:<30} {:<30} {}".format(*aRes)) elif sText.startswith("≠"): lWords = sText[1:].split("|") for s1, s2 in itertools.combinations(lWords, 2): | > > > > > > > > > | < | 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 | print("Error. This error doesn’t exist.") else: # pseudo-console sInputText = "\n~==========~ Enter your text [/h /q] ~==========~\n" sText = _getText(sInputText) while True: if sText.startswith("?"): # morphologies for sWord in sText[1:].strip().split(): if sWord: echo("* " + sWord) for sElem, aRes in oSpellChecker.analyze(sWord): echo(" - " + sElem) for sMorph, sMeaning in aRes: echo(" {:<40} {}".format(sMorph, sMeaning)) elif sText.startswith("!"): # spelling suggestions for sWord in sText[1:].strip().split(): if sWord: for lSugg in oSpellChecker.suggest(sWord): echo(" | ".join(lSugg)) if xArgs.debug: for sSugg in lSugg: nDist = strt.distanceDamerauLevenshteinX(sWord, sSugg) echo(f"{sSugg:30} {nDist}") elif sText.startswith(">"): # path in the word graph oSpellChecker.drawPath(sText[1:].strip()) elif sText.startswith("="): # search in dictionnary sSearch = sText[1:].strip() if "=" in sSearch: nCut = sSearch.find("=") sFlexPattern = sSearch[0:nCut] sTagsPattern = sSearch[nCut+1:] else: sFlexPattern = sSearch sTagsPattern = "" for aRes in oSpellChecker.select(sFlexPattern, sTagsPattern): echo("{:<30} {:<30} {}".format(*aRes)) elif sText.startswith("≠"): # distances calculation lWords = sText[1:].split("|") for s1, s2 in itertools.combinations(lWords, 2): strt.showDistance(s1, s2) elif sText.startswith("/o+ "): oGrammarChecker.gce.setOptions({ opt:True for opt in sText[3:].strip().split() if opt in oGrammarChecker.gce.getOptions() }) echo("done") elif sText.startswith("/o- "): oGrammarChecker.gce.setOptions({ opt:False for opt in sText[3:].strip().split() if opt in oGrammarChecker.gce.getOptions() }) echo("done") elif sText.startswith("/r- "): |
︙ | ︙ |
Modified graphspell/char_player.py from [9efc586374] to [fdeaf568a0].
1 2 3 4 5 | """ List of similar chars useful for suggestion mechanism """ | < < > > > > > > > | | | > > > | | | | | > | > > > > > | | | | | > | > > > > > | > > > > > > > > > > | | | | | | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | """ List of similar chars useful for suggestion mechanism """ dDistanceBetweenChars = { # - with Damerau-Levenshtein, values / 10 (between 0 and 1: 0.1, 0.2 ... 0.9) # - with Jaro-Winkler, values between 1 and 10 # voyelles "a": { "a": 0, "á": .1, "à": .1, "â": .1, "ã": .1 }, "á": { "a": .1, "á": 0, "à": .1, "â": .1, "ã": .1 }, "à": { "a": .1, "á": .1, "à": 0, "â": .1, "ã": .1 }, "â": { "a": .1, "á": .1, "à": .1, "â": 0, "ã": .1 }, "ã": { "a": .1, "á": .1, "à": .1, "â": .1, "ã": 0 }, "e": { "e": 0, "é": .1, "è": .1, "ê": .1, "ẽ": .1 }, "é": { "e": .1, "é": 0, "è": .1, "ê": .1, "ẽ": .1 }, "è": { "e": .1, "é": .1, "è": 0, "ê": .1, "ẽ": .1 }, "ê": { "e": .1, "é": .1, "è": .1, "ê": 0, "ẽ": .1 }, "ẽ": { "e": .1, "é": .1, "è": .1, "ê": .1, "ẽ": 0 }, "i": { "i": 0, "í": .1, "ì": .1, "î": .1, "ĩ": .1 }, "í": { "i": .1, "í": 0, "ì": .1, "î": .1, "ĩ": .1 }, "ì": { "i": .1, "í": .1, "ì": 0, "î": .1, "ĩ": .1 }, "î": { "i": .1, "í": .1, "ì": .1, "î": 0, "ĩ": .1 }, "ĩ": { "i": .1, "í": .1, "ì": .1, "î": .1, "ĩ": 0 }, "o": { "o": 0, "ó": .1, "ò": .1, "ô": .1, "õ": .1 }, "ó": { "o": .1, "ó": 0, "ò": .1, "ô": .1, "õ": .1 }, "ò": { "o": .1, "ó": .1, "ò": 0, "ô": .1, "õ": .1 }, "ô": { "o": .1, "ó": .1, "ò": .1, "ô": 0, "õ": .1 }, "õ": { "o": .1, "ó": .1, "ò": .1, "ô": .1, "õ": 0 }, "u": { "u": 0, "ú": .1, "ù": .1, "û": .1, "ũ": .1 }, "ú": { "u": .1, "ú": 0, "ù": .1, "û": .1, "ũ": .1 }, "ù": { "u": .1, "ú": .1, "ù": 0, "û": .1, "ũ": .1 }, "û": { "u": .1, "ú": .1, "ù": .1, "û": 0, "ũ": .1 }, "ũ": { "u": .1, "ú": .1, "ù": .1, "û": .1, "ũ": 0 }, "y": { "y": 0, "ý": .1, "ỳ": .1, "ŷ": .1, "ỹ": .1 }, "ý": { "y": .1, "ý": 0, "ỳ": .1, "ŷ": .1, "ỹ": .1 }, "ỳ": { "y": .1, "ý": .1, "ỳ": 0, "ŷ": .1, "ỹ": .1 }, "ŷ": { "y": .1, "ý": .1, "ỳ": .1, "ŷ": 0, "ỹ": .1 }, "ỹ": { "y": .1, "ý": .1, "ỳ": .1, "ŷ": .1, "ỹ": 0 }, ## consonnes "b": { "b": 0, "d": .8, "h": .9 }, "c": { "c": 0, "ç": .1, "k": .5, "q": .5, "s": .5, "x": .5, "z": .8 }, "ç": { "c": .1, "ç": 0, "k": .5, "q": .5, "s": .5, "x": .5, "z": .8 }, "d": { "d": 0, "b": .8 }, "f": { "f": 0, "v": .8 }, "g": { "g": 0, "j": .5, "q": .8 }, "h": { "h": 0, "b": .9 }, "j": { "j": 0, "g": .5, "i": .8 }, "k": { "k": 0, "c": .5, "q": .1, "x": .5 }, "l": { "l": 0, "i": .8 }, "m": { "m": 0, "n": .6 }, "n": { "n": 0, "ñ": .1, "m": .6, "r": .8 }, "p": { "p": 0, "q": .8 }, "q": { "q": 0, "c": .5, "k": .1, "p": .8, "g": .8 }, "r": { "r": 0, "n": .8, "j": .9 }, "s": { "s": 0, "c": .5, "ç": .1, "x": .5, "z": .5 }, "t": { "t": 0, "d": .9 }, "v": { "v": 0, "f": .8, "w": .2 }, "w": { "w": 0, "v": .2 }, "x": { "x": 0, "c": .5, "k": .5, "q": .5, "s": .5 }, "z": { "z": 0, "s": .5 } } def distanceBetweenChars (c1, c2): "returns a float between 0 and 1" if c1 == c2: return 0 |
︙ | ︙ |
Modified graphspell/ibdawg.py from [a6af4bb96b] to [b0bfbd049d].
︙ | ︙ | |||
58 59 60 61 62 63 64 | return self.aAllSugg.add(sSugg) nSimDist = st.distanceSift4(self.sSimplifiedWord, st.simplifyWord(sSugg)) #st.showDistance(self.sSimplifiedWord, st.simplifyWord(sSugg)) if nSimDist < self.nMinDist: self.nMinDist = nSimDist if nSimDist <= (self.nMinDist + 1): | | | > | 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | return self.aAllSugg.add(sSugg) nSimDist = st.distanceSift4(self.sSimplifiedWord, st.simplifyWord(sSugg)) #st.showDistance(self.sSimplifiedWord, st.simplifyWord(sSugg)) if nSimDist < self.nMinDist: self.nMinDist = nSimDist if nSimDist <= (self.nMinDist + 1): nDist = min(st.distanceDamerauLevenshteinX(self.sWord, sSugg), st.distanceDamerauLevenshteinX(self.sSimplifiedWord, st.simplifyWord(sSugg))) #print(">", end="") #st.showDistance(self.sWord, sSugg) self.dAccSugg[sSugg] = nDist if " " not in sSugg else nDist+1 if len(self.dAccSugg) > self.nTempSuggLimit: self.nDistLimit = -1 # suggest() ends searching when this variable = -1 self.nDistLimit = min(self.nDistLimit, self.nMinDist+1) def getSuggestions (self): "return a list of suggestions" # sort according to distance lRes = [] lResTmp = sorted(self.dAccSugg.items(), key=lambda x: (x[1], x[0])) #print("\n>", lResTmp) for i in range(min(self.nSuggLimit, len(lResTmp))): lRes.append(lResTmp[i][0]) #st.showDistance(self.sWord, lResTmp[i][0]) # casing if self.sWord.isupper(): lRes = list(dict.fromkeys(map(lambda sSugg: sSugg.upper(), lRes))) elif self.sWord[0:1].isupper(): |
︙ | ︙ |
Modified graphspell/str_transform.py from [5e51d32779] to [947dc593c6].
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | """ Operations on strings: - calculate distance between two strings - transform strings with transformation codes """ import unicodedata import re from .char_player import distanceBetweenChars, dDistanceBetweenChars from .echo import echo #### N-GRAMS def getNgrams (sWord, n=2): "return a list of Ngrams strings" return [ sWord[i:i+n] for i in range(len(sWord)-n+1) ] | > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | """ Operations on strings: - calculate distance between two strings - transform strings with transformation codes """ import unicodedata import re from .char_player import distanceBetweenChars, dDistanceBetweenChars from .echo import echo # import time # from functools import wraps # # def timethis (func): # "decorator for the execution time" # @wraps(func) # def wrapper (*args, **kwargs): # "something to prevent pylint whining" # fStart = time.perf_counter_ns() # result = func(*args, **kwargs) # fEnd = time.perf_counter_ns() # print(func.__name__, fEnd - fStart) # return result # return wrapper #### N-GRAMS def getNgrams (sWord, n=2): "return a list of Ngrams strings" return [ sWord[i:i+n] for i in range(len(sWord)-n+1) ] |
︙ | ︙ | |||
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | nLongest = lMatrix[x][y] nLongestX = x else: lMatrix[x][y] = 0 return s1[nLongestX-nLongest : nLongestX] def distanceDamerauLevenshtein (s1, s2): "distance of Damerau-Levenshtein between <s1> and <s2>" # https://fr.wikipedia.org/wiki/Distance_de_Damerau-Levenshtein d = {} nLen1 = len(s1) nLen2 = len(s2) for i in range(-1, nLen1+1): d[i, -1] = i + 1 for j in range(-1, nLen2+1): d[-1, j] = j + 1 for i in range(nLen1): for j in range(nLen2): | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | nLongest = lMatrix[x][y] nLongestX = x else: lMatrix[x][y] = 0 return s1[nLongestX-nLongest : nLongestX] llMatrix = [ [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41 ], [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 28, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 33, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 34, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 35, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 38, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 39, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 41, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ] #@timethis def distanceDamerauLevenshteinX (s1, s2): "distance of Damerau-Levenshtein between <s1> and <s2>" # https://fr.wikipedia.org/wiki/Distance_de_Damerau-Levenshtein if s1 == s2: return 0 nLen1 = len(s1) nLen2 = len(s2) if nLen1 > 40 or nLen2 > 40: return distanceDamerauLevenshtein(s1, s2) for i in range(1, nLen1+1): for j in range(1, nLen2+1): #nCost = 0 if s1[i-1] == s2[j-1] else 1 nCost = distanceBetweenChars(s1[i-1], s2[j-1]) llMatrix[i][j] = min( llMatrix[i-1][j] + 1, # Deletion llMatrix[i][j-1] + 1, # Insertion llMatrix[i-1][j-1] + nCost, # Substitution ) if i > 1 and j > 1 and s1[i-1] == s2[j-2] and s1[i-2] == s2[j-1]: llMatrix[i][j] = min(llMatrix[i][j], llMatrix[i-2][j-2] + nCost) # Transposition #_showLLMatrix(s1, s2) return llMatrix[nLen1][nLen2] #@timethis def distanceDamerauLevenshtein (s1, s2): "distance of Damerau-Levenshtein between <s1> and <s2>" # https://fr.wikipedia.org/wiki/Distance_de_Damerau-Levenshtein d = {} nLen1 = len(s1) nLen2 = len(s2) for i in range(-1, nLen1+1): d[i, -1] = i + 1 for j in range(-1, nLen2+1): d[-1, j] = j + 1 for i in range(nLen1): for j in range(nLen2): #nCost = distanceBetweenChars(s1[i], s2[j]) # We don’t use distanceBetweenChars to speed up the calc, # as we use this function only for very long words. nCost = 0 if s1[i] == s2[j] else 1 d[i, j] = min( d[i-1, j] + 1, # Deletion d[i, j-1] + 1, # Insertion d[i-1, j-1] + nCost # Substitution ) if i and j and s1[i] == s2[j-1] and s1[i-1] == s2[j]: d[i, j] = min(d[i, j], d[i-2, j-2] + nCost) # Transposition #_showMatrix(s1, s2, d) return d[nLen1-1, nLen2-1] def _showMatrix (s1, s2, dMatrix): "display the matrix for Damerau-Levenshtein distance calculation" nLen1 = len(s1) nLen2 = len(s2) print("\n ", end="") for j in range(-1, nLen2+1): print(f"{s2[j:j+1]:>4}", end="") print("") for i in range(-1, nLen1+1): print(f"{s1[i:i+1]:2}", end="") for j in range(-1, nLen2+1): print(f"{dMatrix.get((i, j),' ·'):4}", end="") print("") def _showLLMatrix (s1, s2): "display the matrix for fast Damerau-Levenshtein distance calculation" nLen1 = len(s1) nLen2 = len(s2) print("\n ", end="") for j in range(-1, nLen2+1): print(f"{s2[j:j+1]:>4}", end="") print("") for i in range(0, nLen1+2): print(f"{s1[i-1:i]:2}", end="") for v in llMatrix[i][:nLen2+2]: print(f"{v:4}", end="") print("") #@timethis def distanceJaroWinkler (sWord1, sWord2, fBoost = .666): "distance of Jaro-Winkler between <sWord1> and <sWord2>, returns a float" # https://github.com/thsig/jaro-winkler-JS if (sWord1 == sWord2): return 1.0 nLen1 = len(sWord1) nLen2 = len(sWord2) nMax = max(nLen1, nLen2) aFlags1 = [ None for _ in range(nMax) ] aFlags2 = [ None for _ in range(nMax) ] nSearchRange = (max(nLen1, nLen2) // 2) - 1 nMinLen = min(nLen1, nLen2) |
︙ | ︙ | |||
189 190 191 192 193 194 195 196 197 198 199 200 201 202 | # and the agreeing characters must be more than half of the # remaining characters. if nMinLen > 4 and nCommon > i + 1 and 2 * nCommon >= nMinLen + i: fWeight += (1 - fWeight) * ((nCommon - i - 1) / (nLen1 * nLen2 - i*2 + 2)) return fWeight def distanceSift4 (s1, s2, nMaxOffset=5): "implementation of general Sift4." # faster than Damerau-Levenshtein and Jaro-Winkler # https://siderite.dev/blog/super-fast-and-accurate-string-distance.html if not s1: return len(s2) if not s2: | > | 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 | # and the agreeing characters must be more than half of the # remaining characters. if nMinLen > 4 and nCommon > i + 1 and 2 * nCommon >= nMinLen + i: fWeight += (1 - fWeight) * ((nCommon - i - 1) / (nLen1 * nLen2 - i*2 + 2)) return fWeight #@timethis def distanceSift4 (s1, s2, nMaxOffset=5): "implementation of general Sift4." # faster than Damerau-Levenshtein and Jaro-Winkler # https://siderite.dev/blog/super-fast-and-accurate-string-distance.html if not s1: return len(s2) if not s2: |
︙ | ︙ | |||
252 253 254 255 256 257 258 | nLocalCS = 0 i1 = i2 = min(i1, i2) nLargestCS += nLocalCS return round(max(nLen1, nLen2) - nLargestCS + nTrans) def showDistance (s1, s2): | | > | | 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 | nLocalCS = 0 i1 = i2 = min(i1, i2) nLargestCS += nLocalCS return round(max(nLen1, nLen2) - nLargestCS + nTrans) def showDistance (s1, s2): "display distances between <s1> and <s2>" nDL = distanceDamerauLevenshtein(s1, s2) fDLX = float(distanceDamerauLevenshteinX(s1, s2)) nS4 = distanceSift4(s1, s2) fJW = distanceJaroWinkler(s1, s2) echo(f"{s1:22} ≠ {s2:22} \tDL: {nDL:2}\tDLX: {fDLX:2.2}\tS4: {nS4:2}\tJW: {fJW}") #### STEMMING OPERATIONS ## No stemming |
︙ | ︙ |