Grammalecte  Check-in [ac1f358667]

Overview
Comment:[build] darg: code cleaning (pylint)
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | build | rg
Files: files | file ages | folders
SHA3-256: ac1f3586679d24bc26bae0ca791790e1aaa821a75e719ce39182105ef2227d03
User & Date: olr on 2018-06-24 16:25:27
Other Links: branch diff | manifest | tags
Context
2018-06-24
16:30
[cli] code cleaning (pylint) check-in: 90a0252af0 user: olr tags: cli, rg
16:25
[build] darg: code cleaning (pylint) check-in: ac1f358667 user: olr tags: build, rg
16:19
[build] make.py: code cleaning (pylint) check-in: 6839c99323 user: olr tags: build, rg
Changes

Modified darg.py from [182863e043] to [5a6ef5f70e].

1
2

3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59
#!python3


# RULE GRAPH BUILDER

#
# by Olivier R.
# License: MPL 2


import json
import time
import traceback

from graphspell.progressbar import ProgressBar



class DARG:
    """DIRECT ACYCLIC RULE GRAPH"""
    # This code is inspired from Steve Hanov’s DAWG, 2011. (http://stevehanov.ca/blog/index.php?id=115)

    def __init__ (self, lRule, sLangCode):
        print("===== Direct Acyclic Rule Graph - Minimal Acyclic Finite State Automaton =====")

        # Preparing DARG
        print(" > Preparing list of tokens")
        self.sLangCode = sLangCode
        self.nRule = len(lRule)
        self.aPreviousRule = []
        Node.resetNextId()
        self.oRoot = Node()
        self.lUncheckedNodes = []  # list of nodes that have not been checked for duplication.
        self.lMinimizedNodes = {}  # list of unique nodes that have been checked for duplication.
        self.nNode = 0
        self.nArc = 0
        
        # build
        lRule.sort()
        oProgBar = ProgressBar(0, len(lRule))
        for aRule in lRule:
            self.insert(aRule)
            oProgBar.increment(1)
        oProgBar.done()
        self.finish()
        self.countNodes()
        self.countArcs()
        self.displayInfo()

    # BUILD DARG
    def insert (self, aRule):

        if aRule < self.aPreviousRule:
            sys.exit("# Error: tokens must be inserted in order.")
    
        # find common prefix between word and previous word
        nCommonPrefix = 0
        for i in range(min(len(aRule), len(self.aPreviousRule))):
            if aRule[i] != self.aPreviousRule[i]:
                break
            nCommonPrefix += 1



>
|
>
|




<
<
<
<

<




















|














>

|
|







1
2
3
4
5
6
7
8
9
10




11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!python3

"""
RULE GRAPH BUILDER
"""

# by Olivier R.
# License: MPL 2






from graphspell.progressbar import ProgressBar



class DARG:
    """DIRECT ACYCLIC RULE GRAPH"""
    # This code is inspired from Steve Hanov’s DAWG, 2011. (http://stevehanov.ca/blog/index.php?id=115)

    def __init__ (self, lRule, sLangCode):
        print("===== Direct Acyclic Rule Graph - Minimal Acyclic Finite State Automaton =====")

        # Preparing DARG
        print(" > Preparing list of tokens")
        self.sLangCode = sLangCode
        self.nRule = len(lRule)
        self.aPreviousRule = []
        Node.resetNextId()
        self.oRoot = Node()
        self.lUncheckedNodes = []  # list of nodes that have not been checked for duplication.
        self.lMinimizedNodes = {}  # list of unique nodes that have been checked for duplication.
        self.nNode = 0
        self.nArc = 0

        # build
        lRule.sort()
        oProgBar = ProgressBar(0, len(lRule))
        for aRule in lRule:
            self.insert(aRule)
            oProgBar.increment(1)
        oProgBar.done()
        self.finish()
        self.countNodes()
        self.countArcs()
        self.displayInfo()

    # BUILD DARG
    def insert (self, aRule):
        "insert a new rule (tokens must be inserted in order)"
        if aRule < self.aPreviousRule:
            exit("# Error: tokens must be inserted in order.")

        # find common prefix between word and previous word
        nCommonPrefix = 0
        for i in range(min(len(aRule), len(self.aPreviousRule))):
            if aRule[i] != self.aPreviousRule[i]:
                break
            nCommonPrefix += 1

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
            oNode = self.lUncheckedNodes[-1][2]

        iToken = nCommonPrefix
        for sToken in aRule[nCommonPrefix:]:
            oNextNode = Node()
            oNode.dArcs[sToken] = oNextNode
            self.lUncheckedNodes.append((oNode, sToken, oNextNode))
            if iToken == (len(aRule) - 2): 
                oNode.bFinal = True
            iToken += 1
            oNode = oNextNode
        oNode.bFinal = True
        self.aPreviousRule = aRule

    def finish (self):







|







66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
            oNode = self.lUncheckedNodes[-1][2]

        iToken = nCommonPrefix
        for sToken in aRule[nCommonPrefix:]:
            oNextNode = Node()
            oNode.dArcs[sToken] = oNextNode
            self.lUncheckedNodes.append((oNode, sToken, oNextNode))
            if iToken == (len(aRule) - 2):
                oNode.bFinal = True
            iToken += 1
            oNode = oNextNode
        oNode.bFinal = True
        self.aPreviousRule = aRule

    def finish (self):
92
93
94
95
96
97
98

99
100
101

102
103
104
105
106

107
108
109
110
111

112
113
114
115
116
117
118
119
120
121
122
123
124


125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
                oNode.dArcs[sToken] = self.lMinimizedNodes[oChildNode]
            else:
                # add the state to the minimized nodes.
                self.lMinimizedNodes[oChildNode] = oChildNode
            self.lUncheckedNodes.pop()

    def countNodes (self):

        self.nNode = len(self.lMinimizedNodes)

    def countArcs (self):

        self.nArc = 0
        for oNode in self.lMinimizedNodes:
            self.nArc += len(oNode.dArcs)

    def displayInfo (self):

        print(" * {:<12} {:>16,}".format("Rules:", self.nRule))
        print(" * {:<12} {:>16,}".format("Nodes:", self.nNode))
        print(" * {:<12} {:>16,}".format("Arcs:", self.nArc))

    def createGraph (self):

        dGraph = { 0: self.oRoot.getNodeAsDict() }
        for oNode in self.lMinimizedNodes:
            sHashId = oNode.__hash__() 
            if sHashId not in dGraph:
                dGraph[sHashId] = oNode.getNodeAsDict()
            else:
                print("Error. Double node… same id: ", sHashId)
                print(str(oNode.getNodeAsDict()))
        return dGraph



class Node:


    NextId = 0
    
    def __init__ (self):
        self.i = Node.NextId
        Node.NextId += 1
        self.bFinal = False
        self.dArcs = {}          # key: arc value; value: a node

    @classmethod
    def resetNextId (cls):

        cls.NextId = 0

    def __str__ (self):
        # Caution! this function is used for hashing and comparison!
        cFinal = "1"  if self.bFinal  else "0"
        l = [cFinal]
        for (key, oNode) in self.dArcs.items():
            l.append(str(key))
            l.append(str(oNode.i))
        return "_".join(l)

    def __hash__ (self):
        # Used as a key in a python dictionary.
        return self.__str__().__hash__()

    def __eq__ (self, other):
        # Used as a key in a python dictionary.
        # Nodes are equivalent if they have identical arcs, and each identical arc leads to identical states.
        return self.__str__() == other.__str__()        

    def getNodeAsDict (self):
        "returns the node as a dictionary structure"
        dNode = {}
        dReValue = {}
        dReMorph = {}
        dRule = {}







>



>





>





>


|










>
>

|








>


















|







90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
                oNode.dArcs[sToken] = self.lMinimizedNodes[oChildNode]
            else:
                # add the state to the minimized nodes.
                self.lMinimizedNodes[oChildNode] = oChildNode
            self.lUncheckedNodes.pop()

    def countNodes (self):
        "count nodes within the whole graph"
        self.nNode = len(self.lMinimizedNodes)

    def countArcs (self):
        "count arcs within the whole graph"
        self.nArc = 0
        for oNode in self.lMinimizedNodes:
            self.nArc += len(oNode.dArcs)

    def displayInfo (self):
        "display informations about the rule graph"
        print(" * {:<12} {:>16,}".format("Rules:", self.nRule))
        print(" * {:<12} {:>16,}".format("Nodes:", self.nNode))
        print(" * {:<12} {:>16,}".format("Arcs:", self.nArc))

    def createGraph (self):
        "create the graph as a dictionary"
        dGraph = { 0: self.oRoot.getNodeAsDict() }
        for oNode in self.lMinimizedNodes:
            sHashId = oNode.__hash__()
            if sHashId not in dGraph:
                dGraph[sHashId] = oNode.getNodeAsDict()
            else:
                print("Error. Double node… same id: ", sHashId)
                print(str(oNode.getNodeAsDict()))
        return dGraph



class Node:
    """Node of the rule graph"""

    NextId = 0

    def __init__ (self):
        self.i = Node.NextId
        Node.NextId += 1
        self.bFinal = False
        self.dArcs = {}          # key: arc value; value: a node

    @classmethod
    def resetNextId (cls):
        "reset to 0 the node counter"
        cls.NextId = 0

    def __str__ (self):
        # Caution! this function is used for hashing and comparison!
        cFinal = "1"  if self.bFinal  else "0"
        l = [cFinal]
        for (key, oNode) in self.dArcs.items():
            l.append(str(key))
            l.append(str(oNode.i))
        return "_".join(l)

    def __hash__ (self):
        # Used as a key in a python dictionary.
        return self.__str__().__hash__()

    def __eq__ (self, other):
        # Used as a key in a python dictionary.
        # Nodes are equivalent if they have identical arcs, and each identical arc leads to identical states.
        return self.__str__() == other.__str__()

    def getNodeAsDict (self):
        "returns the node as a dictionary structure"
        dNode = {}
        dReValue = {}
        dReMorph = {}
        dRule = {}