Overview
Comment: | [build] darg: code cleaning (pylint) |
---|---|
Downloads: | Tarball | ZIP archive | SQL archive |
Timelines: | family | ancestors | descendants | both | build | rg |
Files: | files | file ages | folders |
SHA3-256: |
ac1f3586679d24bc26bae0ca791790e1 |
User & Date: | olr on 2018-06-24 16:25:27 |
Other Links: | branch diff | manifest | tags |
Context
2018-06-24
| ||
16:30 | [cli] code cleaning (pylint) check-in: 90a0252af0 user: olr tags: cli, rg | |
16:25 | [build] darg: code cleaning (pylint) check-in: ac1f358667 user: olr tags: build, rg | |
16:19 | [build] make.py: code cleaning (pylint) check-in: 6839c99323 user: olr tags: build, rg | |
Changes
Modified darg.py from [182863e043] to [5a6ef5f70e].
1 2 | #!python3 | > | > | < < < < < | > | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | #!python3 """ RULE GRAPH BUILDER """ # by Olivier R. # License: MPL 2 from graphspell.progressbar import ProgressBar class DARG: """DIRECT ACYCLIC RULE GRAPH""" # This code is inspired from Steve Hanov’s DAWG, 2011. (http://stevehanov.ca/blog/index.php?id=115) def __init__ (self, lRule, sLangCode): print("===== Direct Acyclic Rule Graph - Minimal Acyclic Finite State Automaton =====") # Preparing DARG print(" > Preparing list of tokens") self.sLangCode = sLangCode self.nRule = len(lRule) self.aPreviousRule = [] Node.resetNextId() self.oRoot = Node() self.lUncheckedNodes = [] # list of nodes that have not been checked for duplication. self.lMinimizedNodes = {} # list of unique nodes that have been checked for duplication. self.nNode = 0 self.nArc = 0 # build lRule.sort() oProgBar = ProgressBar(0, len(lRule)) for aRule in lRule: self.insert(aRule) oProgBar.increment(1) oProgBar.done() self.finish() self.countNodes() self.countArcs() self.displayInfo() # BUILD DARG def insert (self, aRule): "insert a new rule (tokens must be inserted in order)" if aRule < self.aPreviousRule: exit("# Error: tokens must be inserted in order.") # find common prefix between word and previous word nCommonPrefix = 0 for i in range(min(len(aRule), len(self.aPreviousRule))): if aRule[i] != self.aPreviousRule[i]: break nCommonPrefix += 1 |
︙ | ︙ | |||
68 69 70 71 72 73 74 | oNode = self.lUncheckedNodes[-1][2] iToken = nCommonPrefix for sToken in aRule[nCommonPrefix:]: oNextNode = Node() oNode.dArcs[sToken] = oNextNode self.lUncheckedNodes.append((oNode, sToken, oNextNode)) | | | 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | oNode = self.lUncheckedNodes[-1][2] iToken = nCommonPrefix for sToken in aRule[nCommonPrefix:]: oNextNode = Node() oNode.dArcs[sToken] = oNextNode self.lUncheckedNodes.append((oNode, sToken, oNextNode)) if iToken == (len(aRule) - 2): oNode.bFinal = True iToken += 1 oNode = oNextNode oNode.bFinal = True self.aPreviousRule = aRule def finish (self): |
︙ | ︙ | |||
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 | oNode.dArcs[sToken] = self.lMinimizedNodes[oChildNode] else: # add the state to the minimized nodes. self.lMinimizedNodes[oChildNode] = oChildNode self.lUncheckedNodes.pop() def countNodes (self): self.nNode = len(self.lMinimizedNodes) def countArcs (self): self.nArc = 0 for oNode in self.lMinimizedNodes: self.nArc += len(oNode.dArcs) def displayInfo (self): print(" * {:<12} {:>16,}".format("Rules:", self.nRule)) print(" * {:<12} {:>16,}".format("Nodes:", self.nNode)) print(" * {:<12} {:>16,}".format("Arcs:", self.nArc)) def createGraph (self): dGraph = { 0: self.oRoot.getNodeAsDict() } for oNode in self.lMinimizedNodes: | > > > > | > > | > | | 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | oNode.dArcs[sToken] = self.lMinimizedNodes[oChildNode] else: # add the state to the minimized nodes. self.lMinimizedNodes[oChildNode] = oChildNode self.lUncheckedNodes.pop() def countNodes (self): "count nodes within the whole graph" self.nNode = len(self.lMinimizedNodes) def countArcs (self): "count arcs within the whole graph" self.nArc = 0 for oNode in self.lMinimizedNodes: self.nArc += len(oNode.dArcs) def displayInfo (self): "display informations about the rule graph" print(" * {:<12} {:>16,}".format("Rules:", self.nRule)) print(" * {:<12} {:>16,}".format("Nodes:", self.nNode)) print(" * {:<12} {:>16,}".format("Arcs:", self.nArc)) def createGraph (self): "create the graph as a dictionary" dGraph = { 0: self.oRoot.getNodeAsDict() } for oNode in self.lMinimizedNodes: sHashId = oNode.__hash__() if sHashId not in dGraph: dGraph[sHashId] = oNode.getNodeAsDict() else: print("Error. Double node… same id: ", sHashId) print(str(oNode.getNodeAsDict())) return dGraph class Node: """Node of the rule graph""" NextId = 0 def __init__ (self): self.i = Node.NextId Node.NextId += 1 self.bFinal = False self.dArcs = {} # key: arc value; value: a node @classmethod def resetNextId (cls): "reset to 0 the node counter" cls.NextId = 0 def __str__ (self): # Caution! this function is used for hashing and comparison! cFinal = "1" if self.bFinal else "0" l = [cFinal] for (key, oNode) in self.dArcs.items(): l.append(str(key)) l.append(str(oNode.i)) return "_".join(l) def __hash__ (self): # Used as a key in a python dictionary. return self.__str__().__hash__() def __eq__ (self, other): # Used as a key in a python dictionary. # Nodes are equivalent if they have identical arcs, and each identical arc leads to identical states. return self.__str__() == other.__str__() def getNodeAsDict (self): "returns the node as a dictionary structure" dNode = {} dReValue = {} dReMorph = {} dRule = {} |
︙ | ︙ |