Grammalecte  Check-in [2e960183fa]

Overview
Comment:[graphspell] remove useless code
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk | graphspell
Files: files | file ages | folders
SHA3-256: 2e960183fabc8b970fa62db55c2a99a8dadd9721940053b1c6a81e88135bafb8
User & Date: olr on 2020-05-03 09:21:36
Other Links: manifest | tags
Context
2020-05-03
10:46
[graphspell] char_player: ajustements check-in: 3e13a382eb user: olr tags: trunk, graphspell
09:21
[graphspell] remove useless code check-in: 2e960183fa user: olr tags: trunk, graphspell
09:12
[graphspell] experiment: DamerauLevenstein distance modified by function calculating distance between chars check-in: 90478790e5 user: olr tags: trunk, graphspell
Changes

Modified graphspell-js/str_transform.js from [b9cc7d5a41] to [9baf96ac7b].

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
                    if (i > 1 && j > 1 && s1[i] == s2[j-1] && s1[i-1] == s2[j]) {
                        matrix[i][j] = Math.min(matrix[i][j], matrix[i-2][j-2] + nCost);  // Transposition
                    }
                }
            }
            return Math.floor(matrix[nLen1][nLen2]);
        }
        catch (e) {
            console.error(e);
        }
    },

    distanceDamerauLevenshtein2: function (s1, s2) {
        // distance of Damerau-Levenshtein between <s1> and <s2>
        // https://fr.wikipedia.org/wiki/Distance_de_Damerau-Levenshtein
        try {
            let nLen1 = s1.length;
            let nLen2 = s2.length;
            let INF = nLen1 + nLen2;
            let matrix = [];
            let sd = {};
            for (let i = 0; i < nLen1+2; i++) {
                matrix[i] = new Array(nLen2+2);
            }
            matrix[0][0] = INF;
            for (let i = 0; i <= nLen1; i++) {
                matrix[i+1][1] = i;
                matrix[i+1][0] = INF;
                sd[s1[i]] = 0;
            }
            for (let j = 0; j <= nLen2; j++) {
                matrix[1][j+1] = j;
                matrix[0][j+1] = INF;
                sd[s2[j]] = 0;
            }

            for (let i = 1; i <= nLen1; i++) {
                let DB = 0;
                for (let j = 1; j <= nLen2; j++) {
                    let i1 = sd[s2[j-1]];
                    let j1 = DB;
                    if (s1[i-1] === s2[j-1]) {
                        matrix[i+1][j+1] = matrix[i][j];
                        DB = j;
                    }
                    else {
                        matrix[i+1][j+1] = Math.min(matrix[i][j], Math.min(matrix[i+1][j], matrix[i][j+1])) + 1;
                    }
                    matrix[i+1][j+1] = Math.min(matrix[i+1][j+1], matrix[i1] ? matrix[i1][j1] + (i-i1-1) + 1 + (j-j1-1) : Infinity);
                }
                sd[s1[i-1]] = i;
            }
            return matrix[nLen1+1][nLen2+1];
        }
        catch (e) {
            console.error(e);
        }
    },

    showDistance (s1, s2) {
        console.log(`Distance: ${s1} / ${s2} = ${this.distanceDamerauLevenshtein(s1, s2)})`);







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







91
92
93
94
95
96
97















































98
99
100
101
102
103
104
                    if (i > 1 && j > 1 && s1[i] == s2[j-1] && s1[i-1] == s2[j]) {
                        matrix[i][j] = Math.min(matrix[i][j], matrix[i-2][j-2] + nCost);  // Transposition
                    }
                }
            }
            return Math.floor(matrix[nLen1][nLen2]);
        }















































        catch (e) {
            console.error(e);
        }
    },

    showDistance (s1, s2) {
        console.log(`Distance: ${s1} / ${s2} = ${this.distanceDamerauLevenshtein(s1, s2)})`);