Grammalecte  Check-in [a9944ce123]

Overview
Comment:[graphspell][js] dawg generator (draft)
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk | graphspell
Files: files | file ages | folders
SHA3-256: a9944ce12366870e1e840b96314df62975675e7dcc06c12df96178cba42b4078
User & Date: olr on 2018-02-02 17:03:36
Other Links: manifest | tags
Context
2018-02-02
17:09
[fx] lexicon generator: label update check-in: f0cfb4d28b user: olr tags: trunk, fx
17:03
[graphspell][js] dawg generator (draft) check-in: a9944ce123 user: olr tags: trunk, graphspell
2018-01-31
13:08
[fx] update: lexicon update (code clarification) check-in: 341fcee2ed user: olr tags: trunk, fx
Changes

Added graphspell-js/dawg.js version [cd7995de2e].































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
// JavaScript

// FSA DICTIONARY BUILDER
//
// by Olivier R.
// License: MPL 2
//
// This tool encodes lexicon into an indexable binary dictionary 
// Input files MUST be encoded in UTF-8.

"use strict";


if (typeof(require) !== 'undefined') {
    var str_transform = require("resource://grammalecte/graphspell/str_transform.js");
}


${map}


class DAWG {
    /*  DIRECT ACYCLIC WORD GRAPH
        This code is inspired from Steve Hanov’s DAWG, 2011. (http://stevehanov.ca/blog/index.php?id=115)
        We store suffix/affix codes and tags within the graph after the “real” word.
        A word is a list of numbers [ c1, c2, c3 . . . cN, iAffix, iTags]
        Each arc is an index in this.lArcVal, where are stored characters, suffix/affix codes for stemming and tags.
        Important: As usual, the last node (after ‘iTags’) is tagged final, AND the node after ‘cN’ is ALSO tagged final.
    */

    constructor (lEntrySrc, sLangName, cStemming, xProgressBarNode=null) {
        console.log("===== Direct Acyclic Word Graph - Minimal Acyclic Finite State Automaton =====")
        switch (cStemming.toUpperCase()) {
            case "A":
                funcStemmingGen = str_transform.defineAffixCode; break;
            case "S":
                funcStemmingGen = str_transform.defineSuffixCode; break;
            case "N":
                funcStemmingGen = str_transform.noStemming; break;
            default:
                throw "Error. Unknown stemming code: " + cStemming;
        }
        
        let lEntry = [];
        let lChar = [''],  Char = new Map(),  nChar = 1,  dCharOccur = new Map();
        let lAff  = [],    Aff  = new Map(),  nAff  = 0,  dAffOccur = new Map();
        let lTag  = [],    Tag  = new Map(),  nTag  = 0,  dTagOccur = new Map();
        let nErr = 0;
        
        // read lexicon
        for (let [sFlex, sStem, sTag] of lEntrySrc) {
            addWordToCharDict(sFlex);
            // chars
            for (let c of sFlex) {
                if (!dChar.get(c)) {
                    dChar.set(c, nChar);
                    lChar.push(c);
                    nChar += 1;
                }
                dCharOccur.set(c, dCharOccur.gl_get(c, 0) + 1);
            }
            // affixes to find stem from flexion
            sAff = funcStemmingGen(sFlex, sStem)
            if (!dAff.get(sAff)) {
                dAff.set(sAff, nAff);
                lAff.push(sAff);
                nAff += 1;
            }
            dAffOccur.set(sAff, dCharOccur.gl_get(sAff, 0) + 1);
            // tags
            if (!dTag.get(sTag)) {
                dTag.set(sTag, nTag);
                lTag.push(sTag);
                nTag += 1;
            }
            dTagOccur.set(sTag, dTagOccur.gl_get(sTag, 0) + 1);
            lEntry.push([sFlex, dAff.get(sAff), dTag.get(sTag)]);
        }
        if (lEntry.length == 0) {
            throw "Error. Empty lexicon";
        }
        
        // Preparing DAWG
        console.log(" > Preparing list of words");
        let lVal = lChar.concat(lAff).concat(lTag);
        let lWord = [];
        for (let [sFlex, iAff, iTag] of lEntry) {
            let lTemp = [];
            for (let c of sFlex) {
                lTemp.push(dChar.get(c));
            }
            lTemp.push(iAff+nChar);
            lTemp.push(iTag+nChar+nAff)
            lWord.push(lTemp);
        }
        lEntry.length = 0; // clear the array
        
        // Dictionary of arc values occurrency, to sort arcs of each node
        let lKeyVal = [];
        for (let c of dChar.keys()) { lKeyVal.push([dChar[c], dCharOccur[c]]); }
        for (let sAff of dAff.keys()) { lKeyVal.push([dAff[sAff]+nChar, dAffOccur[sAff]]); }
        for (let sTag in dTag.keys()) { lKeyVal.push([dTag[sTag]+nChar+nAff, dTagOccur[sTag]]); }
        dValOccur = new Map(lKeyVal);
        lKeyVal.length = 0; // clear the array

        //with open(spfSrc[:-8]+".valuesfreq.txt", 'w', encoding='utf-8') as hFreqDst:  # DEBUG
        //    for iKey, nOcc in sorted(dValOccur.entries(), key=lambda t: t[1], reverse=True):
        //        hFreqDst.write("{}: {}\n".format(lVal[iKey], nOcc))
        //    hFreqDst.close()
        
        this.sLang = sLangName;
        this.nEntry = lWord.length;
        this.aPreviousEntry = [];
        oNodeCounter.reset();
        this.oRoot = new DawgNode();
        this.lUncheckedNodes = [];          // list of nodes that have not been checked for duplication.
        this.dMinimizedNodes = new Map();   // list of unique nodes that have been checked for duplication.
        this.lSortedNodes = [];             // version 2 and 3
        this.nNode = 0;
        this.nArc = 0;
        this.dChar = dChar;
        this.nChar = dChar.length;
        this.nAff = nAff;
        this.lArcVal = lVal;
        this.nArcVal = lVal.length;
        this.nTag = this.nArcVal - this.nChar - nAff;
        this.cStemming = cStemming;
        if (cStemming == "A") {
            this.funcStemming = str_transform.changeWordWithAffixCode;
        } else if (cStemming == "S") {
            this.funcStemming = str_transform.changeWordWithSuffixCode;
        } else {
            this.funcStemming = str_transform.noStemming;
        }
        
        // build
        lWord.sort();
        if (xProgressBarNode) {
            xProgressBarNode.value = 0;
            xProgressBarNode.max = lWord.length;
        }
        let i = 0;
        for (let aEntry of lWord) {
            this.insert(aEntry);
            if (xProgressBarNode) {
                xProgressBarNode.value = i;
                i += 1;
            }
        }
        this.finish();
        this.countNodes();
        this.countArcs();
        this.sortNodes();
        this.sortNodeArcs(dValOccur);
        this.displayInfo();
    }

    // BUILD DAWG
    insert (aEntry) {
        if (aEntry < this.aPreviousEntry) {
            throw "Error: Words must be inserted in alphabetical order.";
        }
        
        // find common prefix between word and previous word
        let nCommonPrefix = 0;
        for (let i = 0;  i < Math.min(aEntry.length, this.aPreviousEntry.length);  i++) {
            if (aEntry[i] != this.aPreviousEntry[i]) {
                break;
            }
            nCommonPrefix += 1;
        }
        // Check the lUncheckedNodes for redundant nodes, proceeding from last
        // one down to the common prefix size. Then truncate the list at that point.
        this._minimize(nCommonPrefix);

        // add the suffix, starting from the correct node mid-way through the graph
        let oNode = (this.lUncheckedNodes.length == 0) ? this.oRoot : this.lUncheckedNodes[this.lUncheckedNodes.length-1][2];
        let iChar = nCommonPrefix;
        for (let c of aEntry.slice(nCommonPrefix)) {
            let oNextNode = new DawgNode();
            oNode.arcs.set(c, oNextNode);
            this.lUncheckedNodes.push([oNode, c, oNextNode]);
            if (iChar == (aEntry.length - 2)) {
                oNode.final = true;
            }
            iChar += 1;
            oNode = oNextNode;
        }
        oNode.final = true;
        this.aPreviousEntry = aEntry;
    }

    finish () {
        // minimize unchecked nodes
        this._minimize(0);
    }

    _minimize (nDownTo) {
        // proceed from the leaf up to a certain point
        for (let i = this.lUncheckedNodes.length-1;  i < nDownTo-1;  i--) {
            let [oNode, char, oChildNode] = this.lUncheckedNodes[i];
            if (this.dMinimizedNodes.has(oChildNode.__hash__())) {
                // replace the child with the previously encountered one
                oNode.arcs.set(char, this.dMinimizedNodes.get(oChildNode.__hash__()));
            } else {
                // add the state to the minimized nodes.
                this.dMinimizedNodes.set(oChildNode.__hash__(), oChildNode);
            }
            this.lUncheckedNodes.pop();
        }
    }

    countNodes () {
        this.nNode = this.dMinimizedNodes.size;
    }

    countArcs () {
        this.nArc = 0;
        for (let oNode of this.dMinimizedNodes) {
            this.nArc += oNode.arcs.size;
        }
    }
    
    sortNodeArcs (dValOccur) {
        console.log(" > Sort node arcs");
        this.oRoot.sortArcs(dValOccur);
        for (let oNode of this.dMinimizedNodes) {
            oNode.sortArcs(dValOccur);
        }
    }

    sortNodes () {
        console.log(" > Sort nodes");
        for (let oNode of this.oRoot.arcs.values()) {
            this._parseNodes(oNode);
        }
    }
    
    _parseNodes (oNode) {
        // Warning: recursive method
        if (oNode.pos > 0) {
            return;
        }
        oNode.setPos();
        this.lSortedNodes.append(oNode);
        for (let oNextNode of oNode.arcs.values()) {
             this._parseNodes(oNextNode);
        }
    }
        
    lookup (sWord) {
        let oNode = this.oRoot;
        for (let c of sWord) {
            if (!oNode.arcs.has(this.dChar.gl_get(c, ''))) {
                return false;
            }
            oNode = oNode.arcs.get(this.dChar.get(c));
        }
        return oNode.final;
    }

    morph (sWord) {
        let oNode = this.oRoot;
        for (let c in sWord) {
            if (!oNode.arcs.has(this.dChar.get(c, ''))) {
                return '';
            }
            oNode = oNode.arcs.get(this.dChar.get(c));
        }
        if (oNode.final) {
            let s = "* ";
            for (let arc of oNode.arcs.keys()) {
                if (arc >= this.nChar) {
                    s += " [" + this.funcStemming(sWord, this.lArcVal[arc]);
                    let oNode2 = oNode.arcs[arc]
                    for (let arc2 of oNode2.arcs.keys()) {
                        s += " / " + this.lArcVal[arc2];
                    }
                    s += "]";
                }
            }
            return s;
        }
        return '';
    }

    displayInfo () {
        console.log("Entries: " + this.nEntry);
        console.log("Characters: " + this.nChar);
        console.log("Affixes: " + this.nAff);
        console.log("Tags: " + this.nTag);
        console.log("Arc values: " + this.nArcVal);
        console.log("Nodes: " + this.nNode);
        console.log("Arcs: " + this.nArc);
        console.log("Stemming: " + this.cStemming + "FX");
    }

    getArcStats () {
        let d = new Map();
        for (let oNode of this.dMinimizedNodes.values()) {
            let n = oNode.arcs.size;
            d.set(n, d.gl_get(n, 0) + 1);
        }
        let s = " * Nodes:\n";
        for (let [nKey, nVal] of d.entries()) {
            s = s + " " + nVal + " nodes have " + nKey + " arcs\n";
        }
        return s;
    }

    writeInfo () {
        console.log(this.getArcStats());
        console.log("\n * Values:\n");
        let i = 0;
        for (let s of this.lArcVal) {
            console.log(i + ": " + s);
        }
    }

    // BINARY CONVERSION
    createBinary (sPathFile, nMethod) {
        console.log("Write DAWG as an indexable binary dictionary [method: "+nMethod+"]");
        if (nMethod == 1) {
            this.nBytesArc = Math.floor( (this.nArcVal.toString(2).length() + 2) / 8 ) + 1;     // We add 2 bits. See DawgNode.convToBytes1()
            this._calcNumBytesNodeAddress()
            this._calcNodesAddress1()
        } else {
            console.log("Error: unknown compression method");
        }
        console.log("Arc values (chars, affixes and tags): " + this.nArcVal);
        console.log("Arc size: "+this.nBytesArc+" bytes, Address size: "+this.nBytesNodeAddress+" bytes");
        console.log("-> " + this.nBytesArc+this.nBytesNodeAddress + " * " + this.nArc + " = " + (this.nBytesArc+this.nBytesNodeAddress)*this.nArc + " bytes");
        return this._createJSON(nMethod);
    }

    _calcNumBytesNodeAddress () {
        // how many bytes needed to store all nodes/arcs in the binary dictionary
        this.nBytesNodeAddress = 1;
        while (((this.nBytesArc + this.nBytesNodeAddress) * this.nArc) > (2 ** (this.nBytesNodeAddress * 8))) {
            this.nBytesNodeAddress += 1;
        }
    }

    _calcNodesAddress1 () {
        let nBytesNode = this.nBytesArc + this.nBytesNodeAddress;
        let iAddr = this.oRoot.arcs.size * nBytesNode;
        for (let oNode of this.dMinimizedNodes.values()) {
            oNode.addr = iAddr;
            iAddr += Math.max(oNode.arcs.size, 1) * nBytesNode;
        }
    }

    _createJSON (nMethod) {
        /*
            Format of the binary indexable dictionary:
            Each section is separated with 4 bytes of \0
            
            - Section Header:
                /pyfsa/[version]
                    * version is an ASCII string
            
            - Section Informations:
                /[tag_lang]
                /[number of chars]
                /[number of bytes for each arc]
                /[number of bytes for each address node]
                /[number of entries]
                /[number of nodes]
                /[number of arcs]
                /[number of affixes]
                    * each field is a ASCII string
                /[stemming code]
                    * "S" means stems are generated by /suffix_code/, "A" means they are generated by /affix_code/
                      See defineSuffixCode() and defineAffixCode() for details.
                      "N" means no stemming
            
            - Section Values:
                    * a list of strings encoded in binary from utf-8, each value separated with a tabulation
            
            - Section Word Graph (nodes / arcs)
                    * A list of nodes which are a list of arcs with an address of the next node.
                      See DawgNode.convToBytes() for details.
        */


                        


        // DAWG: nodes / arcs
        let sByDic = "";
        if (nMethod == 1) {
            sByDic = this.oRoot.convToBytes1(this.nBytesArc, this.nBytesNodeAddress);
            for (let oNode of this.dMinimizedNodes.values()) {
                sByDic += oNode.convToBytes1(this.nBytesArc, this.nBytesNodeAddress);
            }
        }

        let oJSON = {
            "sName": this.sName,
            "nVersion": this.nMethod,
            "sHeader": this.sHeader,
            "lArcVal": this.lArcVal,
            "nArcVal": this.nArcVal,
            "byDic": oConv.toHexadecimalString(sByDic),
            "sLang": this.sLang,
            "nChar": this.nChar,
            "nBytesArc": this.nBytesArc,
            "nBytesNodeAddress": this.nBytesNodeAddress,
            "nEntries": this.nEntry,
            "nNode": this.nNode,
            "nArc": this.nArc,
            "nAff": this.nAff,
            "cStemming": this.cStemming,
            "nTag": this.nTag,
            "dChar": this.dChar,
            "_arcMask": this._arcMask,
            "_finalNodeMask": this._finalNodeMask,
            "_lastArcMask": this._lastArcMask,
            "_addrBitMask": this._addrBitMask,
            "nBytesOffset": this.nBytesOffset
        };
    }
}


const oNodeCounter = {
    nNextId: 0,

    getId: function () {
        this.nNextId += 1;
        return this.nNextId-1;
    },

    reset: function () {
        this.nNextId = 0;
    }
}


class DawgNode {

    constructor () {
        this.i = oNodeCounter.getId();
        this.final = false;
        this.arcs = new Map();  // key: arc value; value: a node
        this.addr = 0;          // address in the binary dictionary
        this.pos = 0;           // position in the binary dictionary (version 2)
        this.size = 0;          // size of node in bytes (version 3)
    }

    __str__ () {
        // Caution! this function is used for hashing and comparison!
        let l = [];
        if (this.final) {
            l.push("1");
        } else {
            l.push("0");
        }
        for (let [key, node] of this.arcs.entries()) {
            l.push(key.toString());
            l.push(node.i.toString());
        }
        return l.join("_");
    }

    __hash__ () {
        // Used as a key in a python dictionary.
        return this.__str__();
    }

    __eq__ (other) {
        // Used as a key in a python dictionary.
        // Nodes are equivalent if they have identical arcs, and each identical arc leads to identical states.
        return this.__str__() == other.__str__();
    }

    sortArcs (dValOccur) {
        let lTemp = this.arcs.entries();
        lTemp.sort(function (a, b) {
            if (dValOccur.get(a[0], 0) > dValOccur.get(b[0], 0))
                return -1;
            if (dValOccur.get(a[0], 0) < dValOccur.get(b[0], 0))
                return 1;
            return 0;
        });
        this.arcs = new Map(lTemp);
    }

    // VERSION 1 =====================================================================================================
    convToBytes1 (nBytesArc, nBytesNodeAddress) {
        /*
            Node scheme:
            - Arc length is defined by nBytesArc
            - Address length is defined by nBytesNodeAddress
                                           
            |                Arc                |                         Address of next node                          |
            |                                   |                                                                       |
             /---------------\ /---------------\ /---------------\ /---------------\ /---------------\ /---------------\
             | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
             \---------------/ \---------------/ \---------------/ \---------------/ \---------------/ \---------------/
             [...]
             /---------------\ /---------------\ /---------------\ /---------------\ /---------------\ /---------------\
             | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
             \---------------/ \---------------/ \---------------/ \---------------/ \---------------/ \---------------/
              ^ ^
              | |
              | |
              |  \___ if 1, last arc of this node
               \_____ if 1, this node is final (only on the first arc)
        */
        let nArc = this.arcs.size;
        let nFinalNodeMask = 1 << ((nBytesArc*8)-1);
        let nFinalArcMask = 1 << ((nBytesArc*8)-2);
        if (this.arcs.size == 0) {
            let val = nFinalNodeMask | nFinalArcMask;
            let by = oConv.toHexString(val, nBytesArc);
            by += oConv.toHexString(0, nBytesNodeAddress);
            return by;
        }
        let by = [];
        let i = 1;
        for (let arc of this.arcs.keys()) {
            let val = arc;
            if (i == 1 && this.final) {
                val = val | nFinalNodeMask;
            }
            if (i == nArc) {
                val = val | nFinalArcMask;
            }
            i++;
            by += oConv.toHexString(val, nBytesArc);
            by += oConv.toHexString(this.arcs.get(arc).addr, nBytesNodeAddress);
        }
        return by;
    }
}


const oConv = {
    toHexString: function (nVal, nByte) {
        // nVal: value to convert, nByte: number of bytes
        let sHexVal = nVal.toString(16); // conversion to hexadecimal string
        if (sHexVal.length < (nByte*2)) {
            sHexVal = "0".repeat((nByte*2) - sHexVal.length) + sHexVal;
        } else if (sHexVal.length == (nByte*2)) {
            return sHexVal
        } else {
            throw "Conversion to byte string: value bigger than allowed.";
        }
    }
}


// Another attempt to sort node arcs

const _dCharOrder = new Map([ ["", new Map()] ]);
// key: previous char, value: dictionary of chars {c: nValue}


function addWordToCharDict (sWord) {
    let cPrevious = "";
    for (let cChar of sWord) {
        if (!_dCharOrder.get(cPrevious)) {
            _dCharOrder.set(cPrevious, new Map());
        }
        _dCharOrder.get(cPrevious).set(cChar, _dCharOrder.get(cPrevious).gl_get(cChar, 0) + 1);
        cPrevious = cChar;
    }
}

function getCharOrderAfterChar (cChar) {
    return _dCharOrder.gl_get(cChar, null);
}

function displayCharOrder () {
    for (let [key, value] of _dCharOrder.entries()) {
        let s = "[" + key + "]: ";
        let lTemp = value.entries();
        lTemp.sort(function (a, b) {
            if (a[1] > b[1])
                return -1;
            if (a[1] < b[1])
                return 1;
            return 0;
        });
        for (let [c, n] of lTemp) {
            s += c+":"+n+", ";
        }
        console.log(s);
    }
}