
hunspell(4) hunspell(4)

NAME
hunspell − format of Hunspell dictionaries and affix files

DESCRIPTION
Hunspell(1) requires two files to define the language that it is spell checking. The first file is a dictionary
containing words for the language, andthe secondis an "affix" file that defines the meaning of special
flags in the dictionary.

A dictionary file (*.dic) contains a list of words, one per line. The first line of the dictionaries (except per-
sonal dictionaries) contains the approximate word count (for optimal hash memory size). Each word may
optionally be followed by a slash ("/") and one or more flags, which represents affixes or special attributes.
Dictionary words can contain also slashes with the "" syntax. Default flag format is a single (usually alpha-
betic) character. After the dictionary words there are also optional fields separated by tabulators or spaces
(spaces only work as morphological field separators, if they are followed by morphological field ids, see
also Optional data fields).

Personal dictionaries are simple word lists. Asterisk at the first character position signs prohibition.A sec-
ond word separated by a slash sets the affixation.

foo
Foo/Simpson
*bar

In this example, "foo" and "Foo" are personal words, plus Foo will be recognized with affixes of Simpson
(Foo’s etc.) and bar is a forbidden word.

An affix file (*.aff) may contain a lot of optional attributes. For example,SET is used for setting the char-
acter encodings of affixes and dictionary files.TRY sets the change characters for suggestions.REP sets a
replacement table for multiple character corrections in suggestion mode.PFX andSFX defines prefix and
suffix classes named with affix flags.

The following affix file example defines UTF-8 character encoding.‘TRY’ suggestions differ from the bad
word with an English letter or an apostrophe. With these REP definitions, Hunspell can suggest the right
word form, when the misspelled word contains f instead of ph and vice versa.

SET UTF-8
TRY esianrtolcdugmphbyfvkwzESIANRTOLCDUGMPHBYFVKWZ’

REP 2
REP f ph
REP ph f

PFX A Y 1
PFX A 0 re .

SFX B Y 2
SFX B 0 ed [ˆy]
SFX B y ied y

There are two affix classes in the dictionary. Class A defines a ‘re-’ prefix. Class B defines two ‘-ed’ suf-
fixes. First suffix can be added to a word if the last character of the word isn’t ‘y’. Secondsuffix can be
added to the words terminated with an ‘y’. (See later.) The following dictionary file uses these affix classes.

3
hello

2011-01-21 1

hunspell(4) hunspell(4)

try/B
work/AB

All accepted words with this dictionary: "hello", "try", "tried", "work", "worked", "rework", "reworked".

GENERAL OPTIONS
Hunspell source distribution contains more than 80 examples for option usage.

SET encoding
Set character encoding of words and morphemes in affix and dictionary files.Possible values:
UTF-8, ISO8859−1 − ISO8859−10, ISO8859−13 − ISO8859−15, KOI8-R, KOI8-U, microsoft-
cp1251, ISCII-DEVANAGARI.

FLAG value
Set flag type. Default type is the extended ASCII (8-bit) character. ‘UTF-8’ parameter sets UTF-8
encoded Unicode character flags.The ‘long’ value sets the double extended ASCII character flag
type, the ‘num’ sets the decimal number flag type. Decimal flags numbered from 1 to 65000, and
in flag fields are separated by comma.BUG: UTF-8 flag type doesn’t work on ARM platform.

COMPLEXPREFIXES
Set twofold prefix stripping (but single suffix stripping) for agglutinative languages with right-to-
left writing system.

LANG langcode
Set language code. In Hunspell may be language specific codes enabled by LANG code. At
present there are az_AZ, hu_HU, tr_TR specific codes in Hunspell (see the source code).

IGNORE characters
Ignore characters from dictionary words, affixes and input words. Usefulfor optional characters,
as Arabic diacritical marks (Harakat).

AF number_of_flag_vector_aliases

AF flag_vector
Hunspell can substitute affix flag sets with ordinal numbers in affix rules (alias compression, see
makealias tool). First example with alias compression:

3
hello
try/1
work/2

AF definitions in the affix file:

SET UTF-8
TRY esianrtolcdugmphbyfvkwzESIANRTOLCDUGMPHBYFVKWZ’
AF 2
AF A
AF AB

It is equivalent of the following dic file:

3
hello
try/A
work/AB

See also tests/alias* examples of the source distribution.

Note: If affix file contains the FLAG parameter, define it before the AF definitions.

2011-01-21 2

hunspell(4) hunspell(4)

Note II: Use makealias utility in Hunspell distribution to compress aff and dic files.

AM number_of_morphological_aliases

AM morphological_fields
Hunspell can substitute also morphological data with ordinal numbers in affix rules (alias com-
pression). Seetests/alias* examples.

OPTIONS FOR SUGGESTION
Suggestion parameters can optimize the default n-gram, character swap and deletion suggestions of Hun-
spell. REP is suggested to fix the typical and especially bad language specific bugs, because the REP sug-
gestions have the highest priority in the suggestion list. PHONE is for languages with not pronunciation
based orthography.

KEY characters_separated_by_vertical_line_optionally
Hunspell searches and suggests words with one different character replaced by a neighbor KEY
character. Not neighbor characters in KEY string separated by vertical line characters.Suggested
KEY parameters for QWERTY and Dvorak keyboard layouts:

KEY qwertyuiop|asdfghjkl|zxcvbnm
KEY pyfgcrl|aeouidhtns|qjkxbmwvz

Using the first QWERTY layout, Hunspell suggests "nude" and "node" for "*nide". A character may have
more neighbors, too:

KEY qwertzuop|yxcvbnm|qaw|say|wse|dsx|sy|edr|fdc|dx|rft|gfv|fc|tgz|hgb|gv|zhu|jhn|hb|uji|kjm|jn|iko|lkm

TRY characters
Hunspell can suggest right word forms, when they differ from the bad input word by one TRY
character. The parameter of TRY is case sensitive.

NOSUGGEST flag
Words signed with NOSUGGEST flag are not suggested. Proposed flag for vulgar and obscene
words (see also SUBSTANDARD).

MAXCPDSUGS num
Set max. number of suggested compound words (generated by compound rules). (The number of
the suggested compound words may be greater from the same 1-character distance type.)

MAXNGRAMSUGS num
Set max. number of n-gram suggestions. Value 0 switches off the n-gram suggestions (see also
MAXDIFF).

MAXDIFF [0-10]
Set the similarity factor for the n-gram suggestions (5 = default value, 0 = few, but min. 1, 10 =
MAXNGRAMSUGS n-gram suggestions).

ONLYMAXDIFF
Removing all bad ngram suggestions is allowed (default mode keeps one, see MAXDIFF).

NOSPLITSUGS
Disable split-word suggestions.

SUGSWITHDOTS
Add dot(s) to suggestions, if input word terminates in dot(s). (Not for OpenOffice.org dictionar-
ies, because OpenOffice.org has an automatic dot expansion mechanism.)

REP number_of_replacement_definitions

REP what replacement
We can define language-dependent phonetic information in the affix file (.aff) by a replacement ta-
ble. FirstREP is the header of this table and one or more REP data line are following it. With this
table, Hunspell can suggest the right forms for the typical faults of spelling when the incorrect
form differs by more, than 1 letter from the right form.The search string supports the regex
boundary signs (ˆ and $).For example a possible English replacement table definition to handle

2011-01-21 3

hunspell(4) hunspell(4)

misspelled consonants:

REP 5
REP f ph
REP ph f
REP tion$ shun
REP ˆcooccurr co-occurr
REP ˆalot$ a_lot

Note I: It’s very useful to define replacements for the most typical one-character mistakes, too: with REP
you can add higher priority to a subset of the TRY suggestions (suggestion list begins with the REP sugges-
tions).

Note II: Suggesting separated words, specify spaces with underlines:

REP 1
REP onetwothree one_two_three

Note III: Replacement table can be used for a stricter compound word checking (forbidding generated com-
pound words, if they are also simple words with typical fault, see CHECKCOMPOUNDREP).

MAP number_of_map_definitions

MAP string_of_related_chars_or_parenthesized_character_sequences
We can define language-dependent information on characters and character sequences that should
be considered related (i.e. nearer than other chars not in the set) in the affix file (.aff) by a map ta-
ble. With this table, Hunspell can suggest the right forms for words, which incorrectly choose the
wrong letter or letter groups from a related set more than once in a word (see REP).

For example a possible mapping could be for the German umlauted ü versus the regular u; the
word Frühstück really should be written with umlauted u’s and not regular ones

MAP 1
MAP uü

Use parenthesized groups for character sequences (eg. for composed Unicode characters):

MAP 3
MAP ß(ss) (character sequence)
MAP) ("fi" compatibility characters for Unicode fi ligature)
MAP (ó (composed Unicode character: ó with bottom dot)

PHONE number_of_phone_definitions

PHONE what replacement
PHONE uses a table-driven phonetic transcription algorithm borrowed from Aspell. It is useful for
languages with not pronunciation based orthography. You can add a full alphabet conversion and
other rules for conversion of special letter sequences. For detailed documentation see
http://aspell.net/man-html/Phonetic-Code.html. Note:Multibyte UTF-8 characters have not
worked with bracket expression yet. Dash expression has signed bytes and not UTF-8 characters
yet.

WARN flag
This flag is for rare words, wich are also often spelling mistakes, see option -r of command line
Hunspell and FORBIDWARN.

FORBIDWARN
Words with flag WARN aren’t accepted by the spell checker using this parameter.

2011-01-21 4

hunspell(4) hunspell(4)

OPTIONS FOR COMPOUNDING
BREAK number_of_break_definitions

BREAK character_or_character_sequence
Define new break points for breaking words and checking word parts separately. Use ˆ and $ to
delete characters at end and start of the word. Rationale: useful for compounding with joining
character or strings (for example, hyphen in English and German or hyphen and n-dash in Hungar-
ian). Dashes are often bad break points for tokenization, because compounds with dashes may
contain not valid parts, too.)With BREAK, Hunspell can check both side of these compounds,
breaking the words at dashes and n-dashes:

BREAK 2
BREAK -
BREAK -- # n-dash

Breaking are recursive, so foo-bar, bar-foo and foo-foo--bar-bar would be valid compounds. Note: The
default word break of Hunspell is equivalent of the following BREAK definition:

BREAK 3
BREAK -
BREAK ˆ-
BREAK -$

Hunspell doesn’t accept the "-word" and "word-" forms by this BREAK definition:

BREAK 1
BREAK -

Switching off the default values:

BREAK 0

Note II: COMPOUNDRULE is better (or will be better) for handling dashes and other compound joining
characters or character strings. Use BREAK, if you want to check words with dashes or other joining char-
acters and there is no time or possibility to describe precise compound rules with COMPOUNDRULE
(COMPOUNDRULE handles only the suffixation of the last word part of a compound word).

Note III: For command line spell checking of words with extra characters, set WORDCHARS parameters:
WORDCHARS --- (see tests/break.*) example

COMPOUNDRULE number_of_compound_definitions

COMPOUNDRULE compound_pattern
Define custom compound patterns with a regex-like syntax. Thefirst COMPOUNDRULE is a
header with the number of the following COMPOUNDRULE definitions. Compound patterns con-
sist compound flags, parentheses, star and question mark meta characters. A flag followed by a ‘*’
matches a word sequence of 0 or more matches of words signed with this compound flag.A flag
followed by a ‘?’ matches a word sequence of 0 or 1 matches of a word signed with this compound
flag. Seetests/compound*.* examples.

Note: en_US dictionary of OpenOffice.org uses COMPOUNDRULE for ordinal number recogni-
tion (1st, 2nd, 11th, 12th, 22nd, 112th, 1000122nd etc.).

Note II: In the case of long and numerical flag types use only parenthesized flags: (1500)*(2000)?

Note III: COMPOUNDRULE flags haven’t been compatible with the COMPOUNDFLAG, COM-
POUNDBEGIN, etc. compound flags yet (use these flags on different words).

COMPOUNDMIN num
Minimum length of words in compound words. Default value is 3 letters.

2011-01-21 5

hunspell(4) hunspell(4)

COMPOUNDFLAG flag
Words signed with COMPOUNDFLAG may be in compound words (except when word shorter
than COMPOUNDMIN). Affixes with COMPOUNDFLAG also permits compounding of affixed
words.

COMPOUNDBEGIN flag
Words signed with COMPOUNDBEGIN (or with a signed affix) may be first elements in com-
pound words.

COMPOUNDLAST flag
Words signed with COMPOUNDLAST (or with a signed affix) may be last elements in compound
words.

COMPOUNDMIDDLE flag
Words signed with COMPOUNDMIDDLE (or with a signed affix) may be middle elements in
compound words.

ONLYINCOMPOUND flag
Suffixes signed with ONLYINCOMPOUND flag may be only inside of compounds (Fuge-ele-
ments in German, fogemorphemes in Swedish).ONLYINCOMPOUND flag works also with
words (see tests/onlyincompound.*).

COMPOUNDPERMITFLAG flag
Prefixes are allowed at the beginning of compounds, suffixes are allowed at the end of compounds
by default. Affixes with COMPOUNDPERMITFLAG may be inside of compounds.

COMPOUNDFORBIDFLAG flag
Suffixes with this flag forbid compounding of the affixed word.

COMPOUNDROOT flag
COMPOUNDROOT flag signs the compounds in the dictionary (Now it is used only in the Hun-
garian language specific code).

COMPOUNDWORDMAX number
Set maximum word count in a compound word. (Default is unlimited.)

CHECKCOMPOUNDDUP
Forbid word duplication in compounds (e.g. foofoo).

CHECKCOMPOUNDREP
Forbid compounding, if the (usually bad) compound word may be a non compound word with a
REP fault. Useful for languages with ‘compound friendly’ orthography.

CHECKCOMPOUNDCASE
Forbid upper case characters at word bound in compounds.

CHECKCOMPOUNDTRIPLE
Forbid compounding, if compound word contains triple repeating letters (e.g. foo|ox or xo|oof).
Bug: missing multi-byte character support in UTF-8 encoding (works only for 7-bit ASCII charac-
ters).

SIMPLIFIEDTRIPLE
Allow simplified 2-letter forms of the compounds forbidden by CHECKCOMPOUNDTRIPLE.
It’s useful for Swedish and Norwegian (and for the old German orthography: Schiff|fahrt -> Schif-
fahrt).

CHECKCOMPOUNDPATTERN number_of_checkcompoundpattern_definitions

CHECKCOMPOUNDPATTERN endchars[/flag] beginchars[/flag] [replacement]
Forbid compounding, if the first word in the compound ends with endchars, and next word begins
with beginchars and (optionally) they hav ethe requested flags.The optional replacement parame-
ter allows simplified compound form.

2011-01-21 6

hunspell(4) hunspell(4)

The special "endchars" pattern 0 (zero) limits the rule to the unmodified stems (stems and stems
with zero affixes):

CHECKCOMPOUNDPATTERN 0/x /y

Note: COMPOUNDMIN doesn’t work correctly with the compound word alternation, so it may need to set
COMPOUNDMIN to lower value.

FORCEUCASE flag
Last word part of a compound with flag FORCEUCASE forces capitalization of the whole com-
pound word. Eg. Dutch word "straat" (street) with FORCEUCASE flags will allowed only in capi-
talized compound forms, according to the Dutch spelling rules.

COMPOUNDSYLLABLE max_syllable vowels
Need for special compounding rules in Hungarian. Firstparameter is the maximum syllable num-
ber, that may be in a compound, if words in compounds are more than COMPOUNDWORDMAX.
Second parameter is the list of vowels (for calculating syllables).

SYLLABLENUM flags
Need for special compounding rules in Hungarian.

OPTIONS FOR AFFIX CREATION
PFX flag cross_product number

PFX flag stripping prefix [condition [morphological_fields...]]

SFX flag cross_product number

SFX flag stripping suffix [condition [morphological_fields...]]
An affix is either a prefix or a suffix attached to root words to make other words. We can define
affix classes with arbitrary number affix rules.Affix classes are signed with affix flags. The first
line of an affix class definition is the header. The fields of an affix class header:

(0) Option name (PFX or SFX)

(1) Flag (name of the affix class)

(2) Cross product (permission to combine prefixes and suffixes). Possiblevalues: Y (yes) or N
(no)

(3) Line count of the following rules.

Fields of an affix rules:

(0) Option name

(1) Flag

(2) stripping characters from beginning (at prefix rules) or end (at suffix rules) of the word

(3) affix (optionally with flags of continuation classes, separated by a slash)

(4) condition.

Zero stripping or affix are indicated by zero. Zero condition is indicated by dot. Condition is a
simplified, regular expression-like pattern, which must be met before the affix can be applied. (Dot
signs an arbitrary character. Characters in braces sign an arbitrary character from the character
subset. Dash hasn’t got special meaning, but circumflex (ˆ) next the first brace sets the comple-
menter character set.)

2011-01-21 7

hunspell(4) hunspell(4)

(5) Optional morphological fields separated by spaces or tabulators.

OTHER OPTIONS
CIRCUMFIX flag

Affix es signed with CIRCUMFIX flag may be on a word when this word also has a prefix with
CIRCUMFIX flag and vice versa.

FORBIDDENWORD flag
This flag signs forbidden word form. Because affixed forms are also forbidden, we can subtract a
subset from set of the accepted affixed and compound words.

FULLSTRIP
With FULLSTRIP, affix rules can strip full words, not only one less characters.

Note: conditions may be word length without FULLSTRIP, too.

KEEPCASE flag
Forbid uppercased and capitalized forms of words signed with KEEPCASE flags. Useful for spe-
cial orthographies (measurements and currency often keep their case in uppercased texts) and writ-
ing systems (e.g. keeping lower case of IPA characters).

Note: With CHECKSHARPS declaration, words with sharp s and KEEPCASE flag may be capi-
talized and uppercased, but uppercased forms of these words may not contain sharp s, only SS.
See germancompounding example in the tests directory of the Hunspell distribution.

Note: Using lot of zero affixes may have a big cost, because every zero affix is checked under affix
analysis before the other affixes.

ICONV number_of_ICONV_definitions

ICONV pattern pattern2
Define input conversion table.

OCONV number_of_OCONV_definitions

OCONV pattern pattern2
Define output conversion table.

LEMMA_PRESENT flag
Not used in Hunspell 1.2. Use "st:" field instead of LEMMA_PRESENT.

NEEDAFFIX flag
This flag signs virtual stems in the dictionary. Only affixed forms of these words will be accepted
by Hunspell. Except, if the dictionary word has a homonym or a zero affix. NEEDAFFIX works
also with prefixes and prefix + suffix combinations (see tests/pseudoroot5.*).

PSEUDOROOT flag
Deprecated. (Former name of the NEEDAFFIX option.)

SUBSTANDARD flag
SUBSTANDARD flag signs affix rules and dictionary words (allomorphs) not used in morphologi-
cal generation (and in suggestion in the future versions). See also NOSUGGEST.

WORDCHARS characters
WORDCHARS extends tokenizer of Hunspell command line interface with additional word char-
acter. For example, dot, dash, n-dash, numbers, percent sign are word character in Hungarian.

CHECKSHARPS
SS letter pair in uppercased (German) words may be upper case sharp s (ß).Hunspell can handle
this special casing with the CHECKSHARPS declaration (see also KEEPCASE flag and tests/ger-
mancompounding example) in both spelling and suggestion.

2011-01-21 8

hunspell(4) hunspell(4)

Morphological analysis
Hunspell’s dictionary items and affix rules may have optional space or tabulator separated morphological
description fields, started with 3-character (two letters and a colon) field IDs:

word/flags po:noun is:nom

Example: We define a simple resource with morphological informations, a derivative suffix (ds:) and a part
of speech category (po:):

Affix file:

SFX X Y 1
SFX X 0 able . ds:able

Dictionary file:

drink/X po:verb

Test file:

drink
drinkable

Test:

$ analyze test.aff test.dic test.txt
> drink
analyze(drink) = po:verb
stem(drink) = po:verb
> drinkable
analyze(drinkable) = po:verb ds:able
stem(drinkable) = drinkable

You can see in the example, that the analyzer concatenates the morphological fields initem and arrange-
mentstyle.

Optional data fields
Default morphological and other IDs (used in suggestion, stemming and morphological generation):

ph: Alternative transliteration for better suggestion.It’s useful for words with foreign pronunciation.
(Dictionary based phonetic suggestion.)For example:

Marseille ph:maarsayl

st: Stem. Optional: default stem is the dictionary item in morphological analysis. Stem field is useful
for virtual stems (dictionary words with NEEDAFFIX flag) and morphological exceptions instead
of new, single used morphological rules.

feet st:foot is:plural
mice st:mouseis:plural
teeth st:tooth is:plural

Word forms with multiple stems need multiple dictionary items:

lay po:verb st:lie is:past_2
lay po:verb is:present
lay po:noun

2011-01-21 9

hunspell(4) hunspell(4)

al: Allomorph(s). A dictionary item is the stem of its allomorphs.Morphological generation needs
stem, allomorph and affix fields.

sing al:sang al:sung
sang st:sing
sung st:sing

po: Part of speech category.

ds: Derivational suffix(es). Stemmingdoesn’t remove derivational suffixes. Morphologicalgenera-
tion depends on the order of the suffix fields.

In affix rules:

SFX Y Y 1
SFX Y 0 ly . ds:ly_adj

In the dictionary:

ably st:able ds:ly_adj
able al:ably

is: Inflectional suffix(es). All inflectional suffixes are removed by stemming. Morphologicalgenera-
tion depends on the order of the suffix fields.

feet st:foot is:plural

ts: Terminal suffix(es). Terminal suffix fields are inflectional suffix fields "removed" by additional
(not terminal) suffixes.

Useful for zero morphemes and affixes removed by splitting rules.

work/D ts:present

SFX D Y 2
SFX D 0 ed . is:past_1
SFX D 0 ed . is:past_2

Typical example of the terminal suffix is the zero morpheme of the nominative case.

sp: Surface prefix. Temporary solution for adding prefixes to the stems and generated word forms. See
tests/morph.* example.

pa: Parts of the compound words. Output fields of morphological analysis for stemming.

dp: Planned: derivational prefix.

ip: Planned: inflectional prefix.

tp: Planned: terminal prefix.

Tw ofold suffix stripping
Ispell’s original algorithm strips only one suffix. Hunspell can strip another one yet (or a plus prefix in
COMPLEXPREFIXES mode).

The twofold suffix stripping is a significant improvement in handling of immense number of suffixes, that
characterize agglutinative languages.

2011-01-21 10

hunspell(4) hunspell(4)

A second ‘s’ suffix (affix class Y) will be the continuation class of the suffix ‘able’ in the following exam-
ple:

SFX Y Y 1
SFX Y 0 s .

SFX X Y 1
SFX X 0 able/Y .

Dictionary file:

drink/X

Test file:

drink
drinkable
drinkables

Test:

$ hunspell -m -d test <test.txt
drink st:drink
drinkable st:drink fl:X
drinkables st:drink fl:X fl:Y

Theoretically with the twofold suffix stripping needs only the square root of the number of suffix rules,
compared with a Hunspell implementation. In our practice, we could have elaborated the Hungarian inflec-
tional morphology with twofold suffix stripping.

Extended affix classes
Hunspell can handle more than 65000 affix classes. There are three new syntax for giving flags in affix and
dictionary files.

FLAG longcommand sets 2-character flags:

FLAG long
SFX Y1 Y 1
SFX Y1 0 s 1

Dictionary record with the Y1, Z3, F? flags:

foo/Y1Z3F?

FLAG numcommand sets numerical flags separated by comma:

FLAG num
SFX 65000 Y 1
SFX 65000 0 s 1

Dictionary example:

foo/65000,12,2756

The third one is the Unicode character flags.

2011-01-21 11

hunspell(4) hunspell(4)

Homonyms
Hunspell’s dictionary can contain repeating elements that are homonyms:

work/A po:verb
work/B po:noun

An affix file:

SFX A Y 1
SFX A 0 s . sf:sg3

SFX B Y 1
SFX B 0 s . is:plur

Test file:

works

Test:

$ hunspell -d test -m <testwords
work st:work po:verb is:sg3
work st:work po:noun is:plur

This feature also gives a way to forbid illegal prefix/suffix combinations.

Prefix--suffix dependencies
An interesting side-effect of multi-step stripping is, that the appropriate treatment of circumfixes now
comes for free.For instance, in Hungarian, superlatives are formed by simultaneous prefixation ofleg- and
suffixation of -bb to the adjective base. Aproblem with the one-level architecture is that there is no way to
render lexical licensing of particular prefixes and suffixes interdependent, and therefore incorrect forms are
recognized as valid, i.e. *legvén= leg + vén ‘old’. Until the introduction of clusters, a special treatment of
the superlative had to be hardwired in the earlierHunSpell code. This may have been legitimate for a sin-
gle case, but in fact prefix--suffix dependences are ubiquitous in category-changing derivational patterns
(cf. Englishpayable, non-payablebut *non-payor drinkable, undrinkablebut *undrink). In simple words,
here, the prefixun- is legitimate only if the basedrink is suffixed with -able. If both these patters are han-
dled by on-line affix rules and affix rules are checked against the base only, there is no way to express this
dependency and the system will necessarily over- or undergenerate.

In next example, suffix class R have got a prefix ‘continuation’ class (class P).

PFX P Y 1
PFX P 0 un . [prefix_un]+

SFX S Y 1
SFX S 0 s . +PL

SFX Q Y 1
SFX Q 0 s . +3SGV

SFX R Y 1
SFX R 0 able/PS . +DER_V_ADJ_ABLE

Dictionary:

2011-01-21 12

hunspell(4) hunspell(4)

2
drink/RQ [verb]
drink/S [noun]

Morphological analysis:

> drink
drink[verb]
drink[noun]
> drinks
drink[verb]+3SGV
drink[noun]+PL
> drinkable
drink[verb]+DER_V_ADJ_ABLE
> drinkables
drink[verb]+DER_V_ADJ_ABLE+PL
> undrinkable
[prefix_un]+drink[verb]+DER_V_ADJ_ABLE
> undrinkables
[prefix_un]+drink[verb]+DER_V_ADJ_ABLE+PL
> undrink
Unknown word.
> undrinks
Unknown word.

Circumfix
Conditional affixes implemented by a continuation class are not enough for circumfixes, because a circum-
fix is one affix in morphology. We also need CIRCUMFIX option for correct morphological analysis.

circumfixes: ˜ obligate prefix/suffix combinations
superlative in Hungarian: leg- (prefix) AND -bb (suffix)
nagy, nagyobb, legnagyobb, legeslegnagyobb
(great, greater, greatest, most greatest)

CIRCUMFIX X

PFX A Y 1
PFX A 0 leg/X .

PFX B Y 1
PFX B 0 legesleg/X .

SFX C Y 3
SFX C 0 obb . +COMPARATIVE
SFX C 0 obb/AX . +SUPERLATIVE
SFX C 0 obb/BX . +SUPERSUPERLATIVE

Dictionary:

1
nagy/C [MN]

Analysis:

> nagy

2011-01-21 13

hunspell(4) hunspell(4)

nagy[MN]
> nagyobb
nagy[MN]+COMPARATIVE
> legnagyobb
nagy[MN]+SUPERLATIVE
> legeslegnagyobb
nagy[MN]+SUPERSUPERLATIVE

Compounds
Allowing free compounding yields decrease in precision of recognition, not to mention stemming and mor-
phological analysis.Although lexical switches are introduced to license compounding of bases byIspell,
this proves not to be restrictive enough. For example:

affix file
COMPOUNDFLAG X

2
foo/X
bar/X

With this resource,foobarandbarfooalso are accepted words.

This has been improved upon with the introduction of direction-sensitive compounding, i.e., lexical features
can specify separately whether a base can occur as leftmost or rightmost constituent in compounds.This,
however, is still insufficient to handle the intricate patterns of compounding, not to mention idiosyncratic
(and language specific) norms of hyphenation.

The Hunspell algorithm currently allows any affixed form of words, which are lexically marked as poten-
tial members of compounds.Hunspell improved this, and its recursive compound checking rules makes it
possible to implement the intricate spelling conventions of Hungarian compounds. For example, using
COMPOUNDWORDMAX, COMPOUNDSYLLABLE, COMPOUNDROOT, SYLLABLENUM options
can be set the noteworthy Hungarian ‘6-3’ rule. Further example in Hungarian, derivate suffixes often mod-
ify compounding properties. Hunspell allows the compounding flags on the affixes, and there are two spe-
cial flags (COMPOUNDPERMITFLAG and (COMPOUNDFORBIDFLAG) to permit or prohibit com-
pounding of the derivations.

Suffixes with this flag forbid compounding of the affixed word.

We also need several Hunspell features for handling German compounding:

German compounding

set language to handle special casing of German sharp s

LANG de_DE

compound flags

COMPOUNDBEGIN U
COMPOUNDMIDDLE V
COMPOUNDEND W

Prefixes are allowed at the beginning of compounds,
suffixes are allowed at the end of compounds by default:
(prefix)?(root)+(affix)?

2011-01-21 14

hunspell(4) hunspell(4)

Affixes with COMPOUNDPERMITFLAG may be inside of compounds.
COMPOUNDPERMITFLAG P

for German fogemorphemes (Fuge-element)
Hint: ONLYINCOMPOUND is not required everywhere, but the
checking will be a little faster with it.

ONLYINCOMPOUND X

forbid uppercase characters at compound word bounds
CHECKCOMPOUNDCASE

for handling Fuge-elements with dashes (Arbeits-)
dash will be a special word

COMPOUNDMIN 1
WORDCHARS -

compound settings and fogemorpheme for ‘Arbeit’

SFX A Y 3
SFX A 0 s/UPX .
SFX A 0 s/VPDX .
SFX A 0 0/WXD .

SFX B Y 2
SFX B 0 0/UPX .
SFX B 0 0/VWXDP .

a suffix for ‘Computer’

SFX C Y 1
SFX C 0 n/WD .

for forbid exceptions (*Arbeitsnehmer)

FORBIDDENWORD Z

dash prefix for compounds with dash (Arbeits-Computer)

PFX - Y 1
PFX - 0 -/P .

decapitalizing prefix
circumfix for positioning in compounds

PFX D Y 29
PFX D A a/PX A
PFX D Ä ä/PX Ä
.
.
PFX D Y y/PX Y
PFX D Z z/PX Z

Example dictionary:

2011-01-21 15

hunspell(4) hunspell(4)

4
Arbeit/A-
Computer/BC-
-/W
Arbeitsnehmer/Z

Accepted compound compound words with the previous resource:

Computer
Computern
Arbeit
Arbeits-
Computerarbeit
Computerarbeits-
Arbeitscomputer
Arbeitscomputern
Computerarbeitscomputer
Computerarbeitscomputern
Arbeitscomputerarbeit
Computerarbeits-Computer
Computerarbeits-Computern

Not accepted compoundings:

computer
arbeit
Arbeits
arbeits
ComputerArbeit
ComputerArbeits
Arbeitcomputer
ArbeitsComputer
Computerarbeitcomputer
ComputerArbeitcomputer
ComputerArbeitscomputer
Arbeitscomputerarbeits
Computerarbeits-computer
Arbeitsnehmer

This solution is still not ideal, however, and will be replaced by a pattern-based compound-checking algo-
rithm which is closely integrated with input buffer tokenization. Patterns describing compounds come as a
separate input resource that can refer to high-level properties of constituent parts (e.g. the number of sylla-
bles, affix flags, and containment of hyphens). The patterns are matched against potential segmentations of
compounds to assess wellformedness.

Unicode character encoding
Both Ispell andMyspell use 8-bit ASCII character encoding, which is a major deficiency when it comes to
scalability. Although a language like Hungarian has a standard ASCII character set (ISO 8859-2), it fails to
allow a full implementation of Hungarian orthographic conventions. For instance, the ’--’ symbol (n-dash)
is missing from this character set contrary to the fact that it is not only the official symbol to delimit paren-
thetic clauses in the language, but it can be in compound words as a special ’big’ hyphen.

MySpell has got some 8-bit encoding tables, but there are languages without standard 8-bit encoding, too.
For example, a lot of African languages have non-latin or extended latin characters.

2011-01-21 16

hunspell(4) hunspell(4)

Similarly, using the original spelling of certain foreign names like Ångströmor Molière is encouraged by
the Hungarian spelling norm, and, since characters ’Å’ and ’è’ are not part of ISO 8859-2, when they com-
bine with inflections containing characters only in ISO 8859-2 (like elative -b"ol, allative -t"ol or delative
-r"ol with double acute), these result in words (like Ångströmr"olor Molière-t"ol.) that can not be encoded
using any single ASCII encoding scheme.

The problems raised in relation to 8-bit ASCII encoding have long been recognized by proponents of Uni-
code. It is clear that trading efficiency for encoding-independence has its advantages when it comes a truly
multi-lingual application. There is implemented a memory and time efficient Unicode handling in Hunspell.
In non-UTF-8 character encodings Hunspell works with the original 8-bit strings. In UTF-8 encoding,
affixes and words are stored in UTF-8, during the analysis are handled in mostly UTF-8, under condition
checking and suggestion are converted to UTF-16. Unicode text analysis and spell checking have a minimal
(0-20%) time overhead and minimal or reasonable memory overhead depends from the language (its UTF-8
encoding and affixation).

Conversion of aspell dictionaries
Aspell dictionaries can be easily converted into hunspell. Conversion steps:

dictionary (xx.cwl -> xx.wl):

preunzip xx.cwl
wc -l < xx.wl > xx.dic
cat xx.wl >> xx.dic

affix file

If the affix file exists, copy it:
cp xx_affix.dat xx.aff
If not, create it with the suitable character encoding (see xx.dat)
echo "SET ISO8859-x" > xx.aff
or
echo "SET UTF-8" > xx.aff

It’s useful to add a TRY option with the characters of the dictionary with frequency order to set edit dis-
tance suggestions:
echo "TRY qwertzuiopasdfghjklyxcvbnmQWERTZUIOPASDFGHJKLYXCVBNM" >>xx.aff

SEE ALSO
hunspell (1), ispell (1), ispell (4)

2011-01-21 17

